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Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer
coefficients at non-adiabatic walls. However, heat transfer may alternatively be considered as the
transport of thermal energy by the total convective—conductive heat flux in a way analogous to the
transport of fluid by the flow field. The paths followed by the total heat flux are the thermal counterpart
to fluid trajectories and facilitate heat-transfer visualisation in a similar manner as flow visualisation.
This has great potential for applications in which insight into the heat fluxes throughout the entire
configuration is essential (e.g. cooling systems, heat exchangers). To date this concept has been restricted
to 2D steady flows. The present study proposes its generalisation to 3D unsteady flows by representing
heat transfer as the 3D unsteady motion of a virtual fluid subject to continuity. This unified ansatz
enables heat-transfer visualisation with well-known geometrical methods from laminar-mixing studies.
These methods lean on the property that continuity “organises” fluid trajectories into sets of coherent
structures (“flow topology”) that geometrically determine the fluid transport. Decomposition of the flow
topology into its constituent coherent structures visualises the transport routes and affords insight into
the transport properties. Thermal trajectories form a thermal topology of essentially equivalent
composition that can be visualised by the same methodology. This thermal topology is defined in both
flow and solid regions and thus describes the heat transfer throughout the entire domain of interest. The
heat-transfer visualisation is provided with a physical framework and demonstrated by way of repre-

sentative examples.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Industrial heat transfer problems may roughly be classified into
two kinds of configurations. First, configurations in which the goal is
rapid achievement of a uniform temperature field from a non-
uniform initial state (“thermal homogenisation”). Second, configu-
rations in which the goal is accomplishment and maintenance of
high heat-transfer rates in certain directions. Thermal homogeni-
sation is relevant for attainment of uniform product properties
and processing conditions (e.g. during fabrication of polymers,
glass, steel) and its key determinant is the temporal evolution of
the temperature field towards its desired uniform state [1,2].
This evolution is dictated by so-called dominant eigenmodes of
the advection-diffusion! operator; these eigenmodes cause the
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tue.nl (A.A. van Steenhoven).

! Some terminology: advection is transport by fluid motion; diffusion is transport
by molecular motion. In heat-transfer problems, advection and diffusion are usually
denoted “convection” and “conduction,” respectively. Here both nomenclatures are
used interchangeably.
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temperature field to rapidly assume a given spatial distribution
that decays exponentially towards a homogeneous state [2—4].
Sustained high heat-transfer rates are relevant for heat exchangers,
cooling applications and certain stages of the thermal processing of
materials (e.g. tempering of polymer melts) and the key determi-
nants here are the direction and intensity of heat fluxes [5—7]. The
present study concentrates on the latter kind of heat-transfer
problems and then specifically under laminar flow conditions. This
is motivated by the persistent relevance of viscous thermofluids
(polymers, glass, steel) and, in particular, by the growing importance
of compact applications due to process intensification and contin-
uous miniaturisation of heat-transfer and thermal-processing
equipment [8—11], the rapid development of micro-fluidics [12—16]
and the rising thermal challenges in electronics cooling [17—22].
Heat transfer traditionally is examined in terms of convective
heat-transfer coefficients at non-adiabatic walls as a function of
the flow conditions [2,5,6,8,23—27]. However, heat transfer may
alternatively be considered as the transport of thermal energy by
the total convective—conductive heat flux in a way analogous to
the transport of fluid by the flow field. The paths followed by the
total heat flux are the thermal counterpart to fluid trajectories and
facilitate heat-transfer visualisation in a similar manner as flow
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Nomenclature

Ch specific heat (J/kg K)

e internal energy (J/kg)

M (non-dimensional) mass flux (kg/m? s)

L characteristic length scale (m)

p pressure (Pa)

Pe = —”OC;UL = UL péclet number

q (non-dimensional) conductive heat
flux (W/m?)

qu volumetric heat source (W/m?)

qc convective heat flux (W/m?)

Q (non-dimensional) total heat flux (W/m?)

Re = U Reynolds number

t (non-dimensional) time (s)
T (non-dimensional) temperature (K)
Tmin minimum temperature (K)
Tnax maximum temperature (K)

u (non-dimensional) fluid velocity (m/s)
U characteristic velocity (m/s)

X (non-dimensional) horizontal coordinate (m)
y (non-dimensional) vertical coordinate (m)

x (non-dimensional) fluid trajectory (m)
XT (non-dimensional) thermal trajectory (m)

Greek symbols
thermal diffusivity (m?/s)
thermal expansivity (1/K)
amplitude of time-periodic fluctuations
thermal conductivity (W/m K)
ratio of thermal conductivities at fluid—solid interface
non-dimensional thermal expansivity
(non-dimensional) stream function (kg/m s)
T (non-dimensional) thermal stream function (W/m)
fluid density (kg/m?)
viscous stress tensor (Pa)
(non-dimensional) period time (s)

FAT EEON >N ™R

Subscripts

0 characteristic quantity
quantity related to solid object
thermal quantity

horizontal vector component
vertical vector component

< X 40

visualisation. This concept has originally been introduced by [28]
for 2D steady flows and has found application in a wide range of
studies. Examples include investigations on convective heat
transfer in general [7,29], total energy flows (comprising thermal,
potential, kinetic, magnetic, electrical and chemical contributions)
[30], heat transfer in reacting flows [31], electronics cooling [32]
and natural convection in the presence of porous walls [33,34]. In
2D steady systems the thermal trajectories are defined by
a thermal stream function; a generalisation to 3D steady flows is
proposed in [30] by identifying the 3D thermal trajectories with
the field lines of the 3D heat-flux vector. Heat-transfer visual-
isation in unsteady flows is hitherto restricted to steady-state
approximations to time-averaged 2D time-periodic flows [30] and
weakly-unsteady flows [35]. However, ways for truly 3D unsteady
heat-transfer visualisation are lacking to date. The present study
seeks to bridge this gap by proposing a method for heat-transfer
visualisation in generic 3D unsteady flows. This hinges on the
unified Lagrangian transport formalism for generic scalar transport
in laminar flows by [36].

Key to the unified Lagrangian approach is the fundamental
property that fluid and thermal trajectories both are subject to an
equivalent continuity constraint and thus, inherently, to the same
geometrical restrictions. Hence, in the trajectory-based (i.e.
Lagrangian) representation, fluid and heat transfer admit a unified
description as the motion of a (virtual) fluid subject to continuity
[36]. This ansatz is particularly suited for laminar flows, where fluid
and thermal trajectories are well-defined, and thus has great
potential for the thermal analysis of the (compact) heat-transfer
problems that motivate this study. The Lagrangian approach e.g.
enables, similar to its proven strength in studies on chaotic
advection, direct investigation of the mechanisms underlying
chaotic heat transfer and its role in the heat-transfer properties of
a given configuration.

The analogy with (laminar) fluid motion enables heat-transfer
visualisation by well-established geometrical methods from
laminar-mixing studies [12,14,37—40]. These methods lean on the
property that continuity “organises” fluid trajectories into sets of
coherent structures (“flow topology) that geometrically determine
the fluid transport. Decomposition of the flow topology into its

constituent coherent structures visualises the transport routes and
affords insight into the transport properties. The thermal trajecto-
ries, by virtue of the fluid-motion analogy, form a thermal topology
of essentially equivalent composition. This facilitates heat-transfer
visualisation by the same methodology. The thermal topology is
defined in both flow and solid regions and thus enables heat-
transfer visualisation throughout the entire domain of interest. This
offers promising new thermal-analysis capabilities beyond those of
conventional methods using temperature and heat-transfer
coefficients.

The exposition is organised as follows. Section 2 provides the
physical framework for the heat-transfer visualisation in generic
unsteady flows. The heat-transfer visualisation is demonstrated for
a 3D steady and 2D unsteady flow in Sections 3 and 4, respectively.
Conclusions are drawn in Section 5.

2. Heat-transfer visualisation in generic 3D unsteady flows
2.1. Heat transfer in terms of the temperature distribution

Heat transfer in fluid flow is governed by the conservation law
for thermal energy, reading

d(pe)

ot
with e, p and u the internal energy, density and velocity, respec-
tively, of the fluid, gy a volumetric heat source, p the pressure, o the
viscous stress tensor and q the conductive heat flux [5]. The fluid
velocity u and pressure p are governed by the well-known
conservation laws for mass and momentum [41].

Incompressible flow conditions imply p = p(T), e = cyT and
V-u = 3DT/Dt, with T the temperature, c, the specific heat and
6 the volumetric expansivity [41], and heat conduction generally
obeys Fourier's law q = —AVT, where 1 is the thermal conduc-
tivity. Substitution into (1), omitting internal heat sources and
viscous heat generation and rescaling variables via x = LX/,
u=Uu,T= Tyin + (Tmax — Tmin)T, p = pop’, t = (L/U)t' and
p = pop’ yields

+V(peu) = qq —pvV-u+ao:vVu—v-q, (1)
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a(p'T)
ot’

as non-dimensional heat equation. The dimensionless parameters
read

!
+V(ITY) = V' <Pe‘1V’T’> - Hp’gz, (2)

_ POChUL’H _ @’ 3)
A PoCh

with Pe the well-known Péclet number and II the non-dimensional
thermal expansivity. Here L, U, pg and pg are characteristic length
scale, velocity, absolute pressure and density, respectively; Ty and
Tmax are minimum and maximum temperature within the domain
of interest.? Quantity 0 < T < 1 represents the non-dimensional
temperature fluctuations relative to the uniform background state
T = Tmin. Primes, indicating non-dimensional quantities, are
dropped for brevity hereafter.

Pe

2.2. Heat transfer in terms of the total heat flux

Thermal expansivity — and thus variation in density — is irrel-
evant for the heat transfer in the compact systems that motivate the
present study.> This admits reformulation of (2) into the transport
form

oTr

1
% TVQe=0 Q=¢+q q=Tu q=-53T. (4

with gq. and q the convective and conductive heat fluxes, respec-
tively, that combined set up the total heat flux Q. (Note that the
particular scaling of the temperature, consistent with [7], ensures
physical meaningfulness of the convective heat flux q. in that it is
independent of the temperature scale, in the direction of the fluid
motion and non-zero only for non-isothermal conditions.) Flux Q
delineates the thermal transport routes in an analogous way as the
velocity u delineates the transport routes of fluid parcels. This
notion forms the backbone of the heat-transfer visualisation
proposed in the present study.

2.3. Heat-transfer visualisation

2.3.1. 2D steady conditions
Mass conservation implies for 2D steady conditions a stream
function ¥ for the fluid motion, governed by

oW oW
VM=0 M= ,ou=>W = My, = —My, (5)
with M the mass flux. The contours of ¥ delineate the streamlines
of the fluid and thus visualise the flow field [41]. Energy conser-
vation (4), analogously, implies a thermal stream function ¥r,
governed by

oWy
ay

oWy

vQ=0 = Tu—Pe VT
Q=0 Q=Tu-Pe 'VI= x

= st *va

(6)

with Q the total heat flux defined before. The contours of ¥t
delineate the “thermal streamlines” (i.e. the paths by which heat
transfer occurs) and thus enable heat-transfer visualisation in
essentially the same way as flow visualisation by ¥. This concept

2 Note that terms corresponding with the constant contribution Tp, to the
temperature vanish by virtue of continuity.

3 Typical characteristics U~©(0.01 m/s), L~0(0.01 m), pg~©O(10° Pa) and fluid
properties comparable to those of water readily lead to Pe~O(100) and
II~0(1075).

has originally been introduced by [28] and has found application in
a wide range of studies on 2D steady heat transfer [7,29—35].

2.3.2. Generalisation to 3D unsteady conditions

The contours of the stream function ¥ according to (5) describe
the Lagrangian trajectories x(t) of fluid parcels with density p in 2D
steady flow fields. In generic 3D unsteady flows, these fluid
trajectories are governed by

dx ap
— =u, —+Vipu) =0. 7
=% otV (7)
Recasting the heat equation (4) via the identity VT = Tv(In T)
into
oT
—+V(Tur) =0
ar T V(Tur) ;
results in a “continuity constraint” equivalent to that in (7). This has
the fundamental implication that generic heat transfer may be
represented as the “motion” of “fluid parcels” with “density” T
(denoted “heat parcels” henceforth) by the “velocity” ur subject to
continuity and naturally puts forth thermal trajectories X1, gov-
erned by

ur = u— Pe~'v(InT), (8)

% = ur, %+V(TUT) =0, (9)
as generalisation of the thermal streamlines delineated by ¥ to 3D
unsteady systems. To date this concept has been restricted to 2D
steady flows (Section 2.3.1); first steps towards 3D steady systems
are made in [30], directly expanding on formulation (6), and
extensions to unsteady conditions are hitherto limited to time-
averaged 2D time-periodic flows [30] and weakly-unsteady 2D
flows [35]. Formalism (9) constitutes the first unconditional
generalisation to generic 3D unsteady heat transfer and paves the
way towards one unified Lagrangian methodology for analysis of
heat transfer and fluid mixing (generalising that proposed in [31]
for 2D steady systems). This is elaborated below.

The continuity constraints in (7) and (9) impose geometrical
restrictions upon the fluid and thermal trajectories x(t) and x(t),
respectively (e.g. they cannot suddenly emerge or terminate inside
the flow) and thus organise them into coherent structures that
geometrically determine the (thermal) transport properties. The
structures formed by x(t) determine the topological make-up
(“flow topology”) of the web of fluid trajectories [39,42,43]; the
thermal trajectories xr(t), analogously, form a “thermal topology.”
The flow (thermal) topology is the generalisation of 2D (thermal)
streamline portraits to 3D unsteady systems and can be systemat-
ically visualised and analysed by well-established geometrical
methods from laminar-mixing studies [12,14,37—40]. This approach
offers promising new capabilities (e.g. visualisation of thermal
transport routes; design of their optimal geometry; in-depth
analysis of the still ill-understood link between mixing and efficient
heat transfer) beyond those of conventional methods using
temperature and heat-transfer coefficients. Its basic concepts and
potential are demonstrated hereafter by way of two case studies.

3. Case study I: 3D steady conditions
3.1. Introduction

The heat-transfer visualisation is demonstrated for a basic
cooling problem. Considered is a cubical object (side length L) with
its hot bottom side maintained at a constant temperature T35 and
exposed to a steady incompressible cold fluid flow with uniform
inlet velocity U and at uniform inlet temperature Tp;,. The analysis
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is performed in non-dimensional form (rescaling according to
Section 2.1), that is, for a cube with unit side length, unit inlet
velocity, inlet temperature T= 0 and bottom-side temperature T= 1.
The relevant non-dimensional parameters in the 2D/3D cases are

Re:g, Pezg, /I=/L°=@,

v a A o
with », « and A the kinematic viscosity, thermal diffusivity and
thermal conductivity of the fluid and «, and A, the thermal diffu-
sivity and thermal conductivity of the object. Parameter Re corre-
sponds with the well-known Reynolds number.

The heat transfer in both flow region and object is governed by
(4). The former for Pe following (10); the latter for gq. = 0 and Pe
substituted by Pe, = Pe/A. Numerical methods for resolution of the
2D/3D flow and temperature fields and the 2D/3D heat-transfer
visualisation are furnished in Appendix A.

(10)

3.2. 2D steady baseline

Fig. 1 shows the flow and thermal behaviour of the 2D simpli-
fication of the cooling problem (flow from left to right) for Re = 10,
Pe = 50 and 4 = 2. Panel a gives the streamline portrait, exposing
the flow around the object and the formation of a recirculation zone
in its wake and the temperature distribution throughout flow and
object. Panel b gives the corresponding thermal streamline portrait.
The temperature field clearly reflects the cooling of the object by
the passing fluid. The thermal streamlines bound, similar to their
flow counterparts, adjacent channels that transport thermal energy
in the same manner as stream tubes transport fluid and thus are the
thermal equivalent to stream tubes.

Continuity dictates that (thermal) stream tubes must either be
closed or connect with a boundary (Section 2.3). This implies two
kinds of tubes: (i) open tubes connected with (solid) boundaries;
(ii) closed tubes. Closed tubes form the “island” that defines the
recirculation zone (Fig. 1a) entrapping and circulating fluid indef-
initely. Open tubes form a “path” that connects inlet and outlet of
the flow domain and thus set up net fluid transport.

Thermal stream tubes behave essentially similar. The open tubes
inside the object facilitate the heat transfer from its hot bottom side
through its interior towards the fluid—solid interface. Here the
open thermal stream tubes continue into the flow region and
collectively form a “plume” that emerges from the perimeter of the
object and rapidly aligns itself with the flow in downstream
direction. This plume constitutes the “thermal path” by which heat

is removed from the object by the passing fluid. The thermal path is
bend around a family of concentric closed thermal stream tubes
that collectively form a thermal recirculation zone (“thermal
island”). The thermal island entraps and circulates thermal energy
and, consequently, forms a thermally-isolated region. The blank
region upstream of the thermal path has negligible heat flux
(Q = 0) and, consequently, renders ¥t undefined (“thermally-
inactive zone”). Thus 2D steady fluid and thermal transport are
governed by essentially equivalent coherent structures, viz.
(thermal) paths and (thermal) islands, that can be exposed by the
(thermal) streamline portraits.

3.3. 3D steady conditions

The continuity constraints here organise the (thermal) stream-
lines into 3D (thermal) stream tubes with the same key properties
as their 2D counterparts: they must either be closed or connect
with a boundary. This, similarly as in the 2D case, results in the
formation of coherent structures and zones that geometrically
determine the (thermal) transport. This is exemplified below by
means of the 3D cooling problem.

Fig. 2 shows 3D thermal streamlines xt according to (9) (van-
ishing unsteady term in continuity constraint) emanating from the
faces of the 3D object at Re = 10, Pe = 100 and 4 = 2. (Flow is in
x-direction and surface gray scales indicate temperature: dark:
T = 0; bright: T = 1.) These thermal streamlines, as in the 2D case
(Fig. 1b), delineate the route along which heat is removed from the
object by the passing flow and outline the 3D thermal path. This
thermal path and a thermally-inactive zone upstream of the object
constitute the 3D thermal topology; thermally-isolated (recircu-
lation) zones similar to the thermal island in Fig. 1b are absent in
this particular case. The thermal topology of the 3D cooling
problem thus is of similar composition as that of its 2D simplifi-
cation. Central entity in both 2D and 3D cases is the thermal path
by which the actual cooling of the object happens. Thermal paths
in fact always form in the presence of non-adiabatic walls and
their (geometrical) properties are key to fluid-wall heat exchange
as well as net thermal transport within the flow in any configu-
ration [36].

Essential difference between 2D and 3D steady topologies is
that the latter may exhibit far greater topological complexity
[39,44]. Thermally-isolated zones may in 3D steady topologies e.g.
emerge in a form similar to tubular non-mixing zones (i.e. the 3D
generalisation of islands) or spheroidal transport barriers known

1.5

S

Fig. 1. 2D cooling problem for Re = 10, Pe = 50, 4 = 2. Panel a shows the fluid streamlines and temperature (dark: T = 0; bright: T = 1); panel b shows thermal streamlines.



M.EM. Speetjens, A.A. van Steenhoven / International Journal of Thermal Sciences 49 (2010) 1103—1114 1107

Fig. 2. 3D thermal path emanating from the hot object for Re = 10, Pe = 100 and 4 = 2. The outline of the thermal path is visualised by 3D thermal streamlines originating from the
faces of the object. Flow is in negative x-direction; surface gray scales indicate temperature (dark: T = 0; bright: T = 1).

from 3D steady mixing flows [40,45]. Moreover, 3D thermal
streamlines may become chaotic and thus give rise to chaotic
transport of heat parcels mechanistically equivalent to chaotic
advection of fluid parcels in 3D steady flows [14,40,45,46]. The
connection between chaotic fluid advection and (chaotic) heat
transfer is in fact of great practical relevance and, consequently,
the subject of investigation in many studies [2,23—27,47]. This
important issue is pursued further in terms of a representative 2D
unsteady system — to which 3D steady systems are dynamically
equivalent [45] — hereafter.

4. Case study II: 2D unsteady conditions
4.1. Introduction

Heat-transfer visualisation in unsteady flows is demonstrated
for a non-dimensional heat-transfer problem within the 2D domain
(x, y) = [0, 1] x [0, 1/2] with spatially-periodic inlet (x = 0) and
outlet (x = 1) and solid bottom (y = 0) and top (y = 1/2) walls. Heat
transfer is induced via the “hot” isothermal bottom (temperature
T = 1) wall and “cold” isothermal top wall (T = 0). The heat transfer
is governed by the non-dimensional heat equation (4), with time-
periodic flow field wu(x,t) = u(x;,t) +u(x_,t) = ux,t+1)
(period time 7 = 1) set up by two adjacent vortices centred
at x, = (1/4 — Ax(t),1/4) (counter-clockwise rotation) and x_ =
(3/4— Ax(t)1/4) (clockwise rotation), respectively. The solenoidal
velocity field 1 is given analytically by

Ux(x,y) = sin(2mx)cos(2my), Uy(x,y) = —cos(2nx)sin(2my)

(11)

and Ax(t) = Ax(t + 1) = € sin(2xt) is the horizontal time-periodic
oscillation of the vortex pair with amplitude e. System parameters
are the Péclet number Pe introduced before and the amplitude e.
Numerical methods for resolution of the temperature field and the
2D heat-transfer visualisation are in Appendix B.

4.2. 2D steady baseline

Fig. 3a gives the streamline portrait ¥ and temperature field at
Pe = 10 for steady conditions (¢ = 0), comprising two adjacent
islands, each associated with one vortex (left: counter-clockwise
circulation; right: clockwise circulation). Fig. 3b gives the corre-
sponding thermal streamlines, clearly revealing the thermal path,
connecting the non-adiabatic bottom and top walls and sand-
wiched in between two thermal islands. The wide sections of the
thermal path that attach to the non-adiabatic walls coincide with
the thermal boundary layers; the contraction occurs in the internal
flow outside these layers.

The streamline portrait consists entirely of islands; paths con-
necting boundaries are, unlike the cooling problem considered
before, absent here. This is a direct consequence of the fact that the
domain is bounded by solid walls impermeable to fluid. The
streamline portraits of closed 2D steady flows as that considered
here are organised by two types of stagnation points: (i) elliptic

O.5b
0.4
0.3
0.2
0.1

0

0 0.2 0.4 0.6 0.8
X

Streamlines and temperature

0 0.2 0.4 0.6 0.8 1
X

Thermal streamlines

Fig. 3. Steady vortex flow (¢ = 0) for Pe = 10. Panel a gives the streamline portrait and the typical temperature field (dark: T=0; bright: T= 1); panel b gives the thermal streamline portrait.
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Fig. 4. Progression of the flow topology with increasing time-periodic fluctuation ¢ (=0.01, 0.05, 0.1, 0.2) visualised by the Poincaré-section (dots) of an array of fluid parcels released
on y = 1/4. Large black dots and black crosses indicate elliptic and hyperbolic periodic points, respectively; gray and black curves indicate stable and unstable manifolds,

respectively, of the hyperbolic points.

points (centres of islands); (ii) hyperbolic points (origin of sepa-
ratrices of islands) [42,48]. The former and latter type are both
present in Fig. 3a and are indicated by the dots and crosses,
respectively. The thermal streamline portrait, on the other hand, is
only partially organised by stagnation points, since the domain is
non-closed in thermal sense by virtue of the non-adiabatic walls.
Here only elliptic stagnation points emerge, viz. the centres of the
thermal islands in Fig. 3b. The remainder of the thermal streamline
portrait consists of the thermal path, the existence of which is, as
before, inextricably linked with the presence of non-adiabatic
walls [36].

4.3. Unsteady conditions

4.3.1. Fluid motion

The fluid motion can in time-periodic flows be visualised by so-
called Poincaré-sections. These are in essence stroboscopic “illu-
minations” of the fluid parcels after each period and thus corre-
spond with the string of subsequent parcel positions at the discrete
time levels t € [0,7,27,...], with 1 = 1 the period time introduced
before [42,46]. The Poincaré-sections of fluid parcels released at
“strategic” locations visualise the flow topology in a manner akin to
the streamline portraits in steady flows. Fig. 4 shows the Poincaré-
sections (black dots) of an array of fluid parcels released on the line
y = 1/4 for growing time-periodicity, comprising islands embedded
in a chaotic sea that expand with increasing e. This is the

4 The streamline portrait of the 2D cooling problem in Section 3 is only partially
organised by stagnation points, namely the recirculation zone centred on an elliptic
stagnation point in the wake of the object.

progression from the regular steady state towards a fully chaotic
state well-known from 2D mixing flows [14,37,42,46].

The Poincaré-section of closed time-periodic flows is organised
by periodic points and associated coherent structures. Periodic
points are the time-periodic equivalent to stagnation points and
correspond with material points that periodically return to their
initial position (period-p points return after p cycles). 2D time-
periodic flows governed by (7) admit, in analogy with the stagna-
tion points, two types: elliptic and hyperbolic points [42,46].
Elliptic points form the centres of islands in the Poincaré-sections
(large dots in Fig. 4).

Hyperbolic points (crosses in Fig. 4) are the origin of so-called
manifolds (black and gray curves in Fig. 4) that occupy (and create)
the chaotic sea. These manifolds are the time-periodic analogy to
separatrices in steady flows and delineate the principal transport
directions in the chaotic sea [14,42,46]. Gray (“stable”) and black
(“unstable”) manifolds correspond with transport to and from the
hyperbolic point, respectively. Manifolds, unlike separatrices, can
intersect outside their underlying (periodic) points, however. This
effectuates exponential stretching of fluid parcels and is the key
mechanism behind chaotic fluid transport; manifold-interaction
zones thus are synonymous to chaotic-advection (or “efficient
mixing”) zones [14,37,42,46].

The chaotic sea ensues from the break-up of the steady-state
islands by mechanisms well-known from 2D dynamical systems.
For “weak” time-periodicity (“low” €) the break-up scenario is
according to the classical KAM/Poincaré—Birkhof theorems [42,46];
for “strong” time-periodicity (“high” ¢) the system may undergo
nonlinear bifurcations that promote further disintegration of the
(remants of the) islands — and thus further “chaotisation” of the
transport [46].
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o 0.2 0.4 0.6

Perspective view

b

0.5

0.4

0 0.2 0.4 0.6 0.8 1
X

Projection in xy-plane

Fig. 5. Typical arrangement of thermal trajectories in the time-space domain (Pe = 10 and ¢ = 0.05). Panel a gives the perspective view; panel b gives the projection in the xy-plane.
Stars indicate elliptic periodic points; thin curves in panel a delineate the corresponding orbit. Thick gray and black curves indicate non-coiled and coiled trajectories, respectively.

4.3.2. Heat transfer

The thermal transport also admits visualisation in terms of
Poincaré-sections. However, similar as in the steady case, the
system is open in thermal sense, meaning that heat parcels on
a given thermal trajectory may exit the domain before leaving
a clear footprint in the Poincaré-section. Thus Poincaré-sections
alone generally provide insufficient insight into the heat transfer.
Therefore, for heat-transfer visualisation both Poincaré-sectioning
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and visualisation of the thermal trajectories in the time-space
domain is employed.

Fig. 5 shows a typical arrangement of thermal trajectories in the
time-space domain, demonstrated for Pe = 10 and ¢ = 0.05, in
perspective view (panel a) and projected into the xy-plane (panel b).
Stars indicate elliptic periodic points and the thin curves in panel
a delineate the corresponding orbit. Two kinds of thermal trajec-
tories can be distinguished: (i) non-coiled trajectories (thick gray
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Fig. 6. Onset to chaotic heat transfer by period-doubling bifurcation of the elliptic points of the thermal islands demonstrated for Pe = 10 (hyperbolic point: star; period-2 islands:
Poincaré-sections). Panels a—c give the progression of the local thermal topology and expansion of the manifold-interaction zone (panel c) with increasing ¢ (=0.0550, 0.0560,
0.0563); panel d shows the spatial extent — and attachment to the non-adiabatic walls — of the expanded manifolds.
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hyperbolic points (crosses) and associated stable (gray curves) and unstable (black curves) manifolds (chaotic heat transfer) and the region occupied by non-coiled thermal

trajectories (regular heat transfer; stars).

curves); (ii) coiled trajectories (thick black curves).’ The former
directly connect the non-adiabatic bottom and top walls and form
open thermal stream tubes in the time-space domain that set up
heat exchange between bottom and top walls in the same way as
the steady-state thermal path (Fig. 3b—d). The latter stem from
progressive disintegration of the steady-state thermal island with
increasing time-periodicity by which its closed thermal trajectories
generically become non-closed. This non-closedness dictates that
the coiled trajectories, similar to non-closed (thermal) streamlines
in steady systems, must connect with non-adiabatic boundaries
and thus also form open thermal stream tubes in the time-space
domain, albeit of far greater topological complexity than their
non-coiled counterparts [36]. Hence, the thermal path consists of
both non-coiled and coiled thermal trajectories. Reminiscent of
the steady baseline, periodic points only partially organise the
thermal topology, viz. the part emanating from the thermal island.
This part undergoes transition to chaos and thus underlies the
occurrence of chaotic heat transfer — or efficient “thermal mixing”
in the present fluid-motion analogy. This is elaborated below.
Disintegration of the thermal island — and the inherent chaot-
isation of the (spatio-temporal) thermal stream tubes — results
from essentially the same mechanisms as those underlying disin-
tegration of islands in 2D mixing flows (Fig. 4). The break-up at
“weak” time-periodicity (“low” €) follows the same scenario as that

5 Thermal trajectories crossing y = 1/4 once are denoted “non-coiled,” otherwise
“coiled”.

for the islands in the flow topology, implying persistent thermal
islands centred on the elliptic points (reminiscent of the islands in
Fig. 4) around which the thermal trajectories coil up. This coiling up
is weakly-chaotic due to the formation of (localised) chaotic seas in
the break-up region of the thermal island. Hence the somewhat
erratic and asymmetric winding patterns of the coiled thermal
trajectories in Fig. 5.

For “stronger” time-periodicity (“higher” ¢) both period-1
elliptic points undergo a so-called period-doubling bifurcation
(here at ¢ = 0.054): each elliptic point transforms into a hyperbolic
point under the formation of two adjacent period-2 elliptic points
[46]. This signifies the onset to chaotic heat transfer and is
demonstrated in Fig. 6 for Pe = 10. Panel a gives the situation just
after the bifurcation; shown are the period-1 hyperbolic point
(star) and its manifolds encircling two period-2 islands (visualised
by Poincaré-sectioning). Stable (gray) and unstable (black) mani-
folds interact only weakly here and are therefore nearly indistin-
guishable. Increasing the time-periodicity intensifies the manifold
interaction and expands the associated chaotic sea at the cost of the
islands (panel b). The manifold-interaction zone remains localised,
though. Slightly stronger time-periodicity (¢ = 0.0563) causes
sudden extension of the manifolds from this zone (panel c) into
a region roughly coinciding with the steady-state thermal island
(panel d). The stable and unstable manifolds, by virtue of conti-
nuity, attach to the bottom and top walls, respectively, and thus set
up chaotic heat exchange between these walls via the flow.

Fig. 7 demonstrates the heat-transfer chaotisation with
increasing time-periodicity for the full domain. Two kinds of



M.EM. Speetjens, A.A. van Steenhoven / International Journal of Thermal Sciences 49 (2010) 1103—1114 11

a 05

0.4

* Ok K % K Kk x
* K K K X K K x
I

* Ok K * ok kK Kk * *

¥ oK K X X K K K X ¥
LR T I

ok K ok K Kk Kk Kk Kk kK

*
*
*
*
*
*
*
*
*
*
*
*
*

¥ K ¥ K K FF K F K ¥ ¥ K K ¥ ¥ *
FOk K Kk ok kK Kk Ok ok %k Kk Kk * *
Lok % % ok ok ko kR K X K K K K K % % K %
¥ OE K K K K K K K X K K K K K K K K K
¥ OE K K K K K K K X K K K K K K K K K
¥ Ok K %X X K K K K X K KX ¥ X K K K ¥ *
FOE K K K K K K K K F ¥ ¥ ¥ K K ¥ ¥ *

>
0.4 0.6 0.8
X
C 05 \ // xoxox ok %o % —
0.4 \’ﬁ (/ e s
I * * * *
0.3} X \
>
0.2} j
0.1t D Sk &
i AN .
* * * #* *
0 L -
0 0.2 0.4 0.6 0.8 1
X

b 0.5

0.4r

>
'R
ok ok ok *
Sk o o
ok ok ok o ox %
T ox ok oxox ok ok ok %
ok K K A R %
T ox ok x ox ok ok o %
TR
oKk K %
P

CEE N 2 T 2

F K K K K R K K K K K X X X X X X K
oKk Ak R R R Kk kK K Kk % %
oKk Ak R R R Kk kK K Kk % %
Sk K kR R ok ok ok K K K X X K

>‘ *
02+ . &
01 L AR ‘o =§___
* ¥ ¥ ¥ * *  * * ¥ %
0 ‘ ‘
0 0.2 0.4 0.6 0.8 1
X
dos 7 W
e n
0.4 i) =i
i W
0.3 W
>
0.2

/ f’?/: ia———

I 77 7=

N
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(crosses) and associated stable (gray curves) and unstable (black curves) manifolds (chaotic heat transfer) and the region occupied by non-coiled thermal trajectories (regular heat

transfer; stars).

coherent structures are relevant in this regard. First, the mani-
fold-interaction zones associated with the hyperbolic points
(crosses) originating from the above bifurcations, signifying
chaotic heat transfer. Second, the region(s) occupied by non-coiled
thermal trajectories (stars), signifying regular heat transfer.® Both
manifold-interaction zones remain localised and embedded in
a weakly-chaotic sea (blank region) up to ¢ = 0.056 (panel a) and
rather abruptly expand and attach to the bottom and top walls for
marginally stronger time-periodicity (panel b). The zones remain
separated by the non-coiled trajectories during this expansion,
however. Further increasing the time-periodicity brings about but
minor changes in the thermal topology (panels c and d). Attachment
of the manifolds to the non-adiabatic walls implies that the chaotic
zones become part of the thermal path. Thus beyond a threshold for
€ (here € = 0.056) the thermal path comprises two parts: (i) regular
part formed by the non-coiled thermal trajectories; (ii) chaotic
part formed by the manifold-interaction zones. The latter are the
thermal equivalent to efficient mixing zones, denoted “thermal-
mixing zones” hereafter, and their spatial extent — and thus the
degree of chaotic heat transfer — depends essentially on Pe. This is
considered below.

6 The (approximate) region occupied by non-coiled thermal trajectories is out-
lined by determining which thermal trajectories emanating from an equidistant
grid of tracers covering the entire domain and released at t = 0 are non-coiled.

The connection between efficient thermal mixing — and its
effect upon fluid-wall heat transfer — and efficient fluid mixing (i.e.
chaotic advection) has, owing to its practical relevance, been
investigated in many studies [2,23—27,47]. However, these studies
consider this only indirectly in terms of temperature distributions
and heat-transfer coefficients at solid walls. The present Lagrangian
approach facilitates visualisation of (possible) thermal-mixing
zones and thus enables a more direct correlation with fluid-mixing
zones. Simulations reveal that, on the one hand, fluid mixing is
imperative for the occurrence of thermal mixing yet, on the other
hand, their connection is highly non-trivial and depends essentially
on Pe. Increasing Pe causes, similar to the foregoing steady cases,
progression of the thermal topology towards its convection-domi-
nated state; thermal-mixing and fluid-mixing zones thus approach
one another with growing Pe. Conversely, the thermal-mixing
zones diminish with decreasing Pe (signifying regularisation of heat
transfer) and vanish altogether below a given threshold (Pep,;,) for
Pe in favour of thermal islands. This expansion of thermal-mixing
zones with increasing convection — and, conversely, the regular-
isation of heat transfer by conduction — is demonstrated in Fig. 8 for
€ = 0.1. Comparison of shown thermal topologies with the corre-
sponding flow topology (Fig. 4c) clearly reveals that fluid-mixing
and thermal-mixing zones deviate progressively with decreasing
Pe. This underscores the highly non-trivial connection between
(chaotic) fluid and heat transfer in cases with significant conduc-
tion. The onset to (local) thermal mixing by break-up of thermal
islands upon exceeding Pe > Pemi, occurs through the same
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b

Non-dimensional case study

Zonal subdivision for Chebyshev approach

Fig. A.9. Numerical treatment case study I. Panel a shows the non-dimensional configuration including (thermal) boundary conditions (essentially similar for 2D and 3D cases);
panel b shows the subdivision of the 2D domain into rectangular zones for the numerical treatment with the Chebyshev expansion (A.1).

mechanism as before, viz. a period-doubling bifurcation of the
elliptic periodic points associated with said islands. Thus convec-
tion must be sufficiently dominant (Pe > Pepy) as well as suffi-
ciently chaotic (¢ > emin) for thermal mixing to happen.

4.4. Towards generic 3D unsteady systems

Heat-transfer visualisation in generic 3D unsteady systems is
in essence similar to that demonstrated above for 2D time-
periodic systems. The thermal trajectories xr remain governed by
relations (9) and 3D heat-transfer visualisation can basically adopt
the same methods: 3D Poincaré-sections and representations
in the 4D time-space domain. Moreover, non-periodic systems
admit visualisation in terms of “wandering” hyperbolic points
and associated manifolds; these constitute the non-periodic
counterparts to hyperbolic points and manifolds in time-periodic
systems [38,49].

However, 3D unsteady heat-transfer visualisation, despite
resting on the same concepts and methods, is complicated signifi-
cantly on grounds of the far greater topological complexity relative
to 2D unsteady and 3D steady systems [39,44,50] and, conse-
quently, the absence of a fully-developed theoretical framework.
The flow and thermal topologies of time-periodic systems are e.g.
organised by periodic lines and isolated periodic points, the asso-
ciated coherent structures of which may form intricate spatial
arrangements that are difficult to visualise in an insightful and
systematic manner; the theory on “wandering” hyperbolic points is
hitherto restricted to highly-idealised 2D systems [38,49]. More-
over, the scenarios and mechanisms underlying 3D chaotic (heat)
transport are largely unexplored to date and subject of ongoing
research [51—54].

5. Conclusions

The study considers heat transfer as the transport of thermal
energy by the total convective—conductive heat flux in a way
analogous to the transport of fluid by the flow field. This facilitate
heat-transfer visualisation in a similar manner as flow visualisation
and has great potential for analysis of thermal systems. To date this
unified concept has been restricted to 2D steady flows. The present
study proposes its generalisation to 3D unsteady flows.

Continuity organises fluid trajectories into coherent structures
(defining the flow topology) that geometrically determine fluid
transport. Decomposition of the flow topology into these coherent
structures by geometrical methods well-known from laminar-
mixing studies visualises the transport routes and affords insight
into the transport properties. The thermal trajectories, by virtue of
the fluid-motion analogy, form a thermal topology that is of
essentially equivalent composition. This facilitates heat-transfer

visualisation by the same geometrical methodology and has been
demonstrated by way of examples.

Fluid and heat transfer in 2D steady systems is determined by
(thermal) streamline portraits that are composed of two kinds of
coherent structures: (i) (thermal) islands that entrap and circulate
fluid or heat; (ii) (thermal) paths attached to boundaries that set up
net fluid or heat transport. 3D steady systems behave similarly in
that 3D (thermal) stream tubes form with similar properties as
their 2D counterparts. Thermal paths are key to fluid-wall heat
exchange and net thermal transport within the flow in both 2D and
3D systems. However, the 3D flow and thermal topologies may
exhibit greater topological complexity and in principle admit
chaotic fluid and heat transfer.

2D time-periodic flows also admit chaotic fluid and heat
transfer. This manifests itself in the (partial) break-up of (thermal)
islands into chaotic seas and in the “chaotisation” of the thermal
path — and thus the heat transfer in toto by scenarios well-known
from laminar mixing. The chaotic seas form “thermal-mixing
zones” and are the thermal equivalent to efficient fluid-mixing
zones. The proposed approach thus facilitates in-depth investiga-
tion of the (still ill-understood) connection between chaotic heat
transfer and chaotic mixing.

Unified flow and heat-transfer visualisation in 3D unsteady
systems is in essence similar to that demonstrated for 2D unsteady
systems in that 3D topologies remain governed by the same rela-
tions. However, they may exhibit far greater topological complexity.
Moreover, the scenarios and mechanisms underlying the onset to
3D chaotic (heat) transport are largely unexplored to date. Further
development of the unified topological framework for transport in
3D unsteady systems and its applications to fluid and heat transfer
is in progress.

Appendix A. Numerical methods: case study I

Resolution of flow and temperature fields

Numerical simulation of the governing 2D/3D conservation laws
are carried out with the commercial finite-volume method (FVM)
package Fluent using boundary conditions according to Fig. A.9a.
(Conditions for 2D and 3D case are in essence the same.) This
facilitates efficient resolution of the flow and temperature fields in
the complex domain comprising flow and solid regions and
discontinuous boundaries.

2D interpolation

The velocity and temperature fields are approximated by Che-
byshev expansions [55]. This admits substantial reduction of the
data sets — and thus of the computational effort required for data
processing — compared to the FVM data sets due to the exponential
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convergence of the Chebyshev spectrum. Representation in Che-
byshev polynomials furthermore facilitates easy and accurate
evaluation of derived quantities. Key condition for exponential
convergence is that fields be sufficiently smooth, however. To this
end the flow domain is subdivided into six rectangular zones
(Fig. A.9b) within which this smoothness constraint is met. The
fields are in each of these zones expanded as

M
):ZZ nm¢m

)¢n(E)), (A1)

with ¢i(z) = cos(k arccos z) the k-th order Chebyshev polynomial,
defined on the interval —1 < z < 1, and

22X =X +X0) . 2y—(Y1+Yp) (A2)

T XX Y -Y '
linear mappings of the physical domain onto the computational
domain, where (Xo, X1) (Yo, Y1) demarcate the bounds of the rect-
angular region in question (Fig. A.9b). The spectral coefficients fm,
are evaluated via discrete Chebyshev transforms [55] by interpo-
lation of the Fluent data onto the Chebyshev grid with the built-in
routine griddata of the commercial high-level programming
language Matlab. This yields the matrix with spectral coefficients F,
the entries of which are given by (F),,;, = fnm, where columns and
rows correspond with the x — wise and y — wise expansions,
respectively.

3D interpolation

In the 3D configuration the above spectral approach becomes
impracticable. Here interpolation of FVM data as well as derived
quantities is therefore based entirely upon the built-in Matlab
routine griddata3.

Computation of 2D gradients

The spectral approximation of the gradient g = Vf of 2D func-
tions f{x, y) according to (A.1) follows readily from application of the
relations for first derivatives of Chebyshev expansions and reads

2 2
X1 —Xo Y - Yo

with (D(K)); = 2j/c; for i + j odd and j > i and (D(K));; = O otherwise
[55]. Here ¢c; =2 and ¢; = 1 for i = 0 and i > 0, respectively, where
0 < i, j < K. Important to note is that this approach enables exact
evaluation of the gradient of the Chebyshev expansion (A.1) [55].
Hence, approximation errors of the FVM data are induced solely by
their interpolation onto said expansion. This absence of additional
approximation errors in derived quantities is a key advantage of the
adopted approach over conventional methods as e.g. finite-differ-
ence schemes.

Gy = F-D'(M), Gy = = D(N)-F, (A3)

Computation of 3D gradients

3D gradients are evaluated on the Fluent grid xf via a standard
central-difference scheme

Xp + 4X, VF, Z, Xp — 4X, VF, Z
x(X) _ fxr YE F)ZA){( F ,YF F)

and likewise for gy,. (Backward/forward-difference schemes are
employed in case xp coincides with domain boundaries.) The
required interpolation of scalar f to adjacent positions is performed
by the built-in Matlab routine griddata3.

(A4)

Computation of 2D (thermal) stream functions

The 2D (thermal) stream functions follow from inversion of the
gradient operator: h = V_lg, where (h, gy, 8y) = (¥, —My, My) (fluid)
or (h, gx, g&) = (W, —Qy, Qx) (heat). This embarks on individually
inverting the matrix relations in (A.3), i.e.

o =X ;XOGXﬁ*T(M), HY) = #ﬁ”(mcy,

(A5)

with D the regularised first-derivative matrix D (the last element in
the first column is set to unity). Matrices H®) and H® identify with
the sought-after matrix H up to the first columns and rows,
respectively. This straightforwardly leads to H = [h§ h{)...h§)],
with hg) the k-th column vector of matrix H*Y), This approach
determines the spectrum H entirely, save the constant Hgg, which
can be chosen arbitrarily.

Computation of 3D (thermal) streamlines

Trajectories x(t) corresponding with a 3D steady vector field v(x)
are governed by the kinematic equation dx/dt = v. Numerical
integration with a third-order Taylor—Galerkin scheme results in
the time-marching scheme

At At
X1 = Xn +?v(xn),xn+% = Xn +7v(xn+%>,

X, 1 = X+ Atv(xy),

with tp = kAt the discrete time levels and xj the corresponding
position [55].

Appendix B. Numerical methods: case study Il

Resolution of temperature field

The temperature field is simulated by numerical resolution of
the standard advection-diffusion form of the energy equation (4),
with an analytical flow field according to (11) via a conventional
Fourier-Chebyshev spectral method in combination with a second-
order Crank—Nicholson time-marching scheme [55]. This ansatz
affords great precision and leans on Fourier—Chebyshev expansion
of variables according to

M/2-1

fxy.t) = Z anm (O¥m(X)dn(C()),

“M/2 n=

(B.1)

with Y, = exp(imx) the m-th order Fourier polynomial and ¢,, the n-
th order Chebyshev polynomial defined before, where Yy = 0 and
Y1 =1/2 in the mapping {(y). The spectrum of the analytical flow
field follows from discrete Fourier—Chebyshev transforms; the
spectral solver simulates the time-evolution of the spectrum of the
temperature field. Thermal conditions on the adiabatic sidewalls
are met automatically by expansion (B.1); thermal conditions on
the non-adiabatic walls are implemented via the standard Lanczos
tau method [55].

Interpolation and computation/inversion of gradients

Interpolation is readily performed with the Fourier—Chebyshev
expansion (B.1) and gradients of scalar quantities are computed
from the associated spectra in essentially the same way as for the
above 2D Chebyshev expansion on grounds of the similarity
between Fourier and Chebyshev expansions [55]. The (thermal)
stream functions follow via inversion of the discrete gradient
operator also in basically the same manner. This approach, as
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before, enables exact evaluation of gradients of variables expressed
as expansion (B.1).

Computation of unsteady (thermal) trajectories

This employs the 2D version of the Taylor—Galerkin scheme (5)
incorporating explicit time dependence of the vector field v.

Isolation and tracking of material points and curves

Periodic points correspond with material points in time-peri-
odic (thermal) flow fields that return to their initial position after
a given number of cycles. These points are identified by isolation of
common roots dX = dY = 0 of the displacement functions dX(x) and
dY(x), with (dX, dY) the displacement of the material point x after
one period, by a 2D simplification of the dedicated 3D root-finding
algorithm by [50]. Their type (i.e. elliptic or hyperbolic) is deter-
mined by the numerical approach following [56]. The manifolds of
hyperbolic periodic points are material curves that are tracked by
a 2D version of the 3D front-tracking algorithms by [50].
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